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Smooth nonparametric estimators of a quantile function based on symmetric

kernels suffer from spill-over around the boundaries which leads to boundary

bias. Based on a beta probability density as a kernel function, a new nonpara-

metric estimator of a quantile function under right censoring is proposed. This

new quantile estimator is free of spill-over around the boundaries. Asymptotic

properties of the proposed quantile estimator are studied. An illustrative exam-

ple and Monte Carlo simulation results are presented to compare the proposed

method with existing estimators and show the substantial improvement.
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1 INTRODUCTION

Let X1, X2, . . . , Xn be independent and identically distributed (iid) with distribution

function F (x) and let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the corresponding order

1It was written when he was at Clemson University, Clemson, SC 29634, USA.
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statistics. A version of the left-continuous quantile function is defined as Q(p) =

inf{t : F (t) ≥ p} for 0 < p < 1. Then a conventional estimator of Q(p) is the pth

sample quantile of F (·) given by X([np]) where [np] is the largest integer not exceeding

np. For more details about this sample quantile, good references are David (1981)

and Galambos (1978).

It is widely known that the sample quantile suffers from a substantial lack of

efficiency. To remedy this problem, many authors proposed smooth alternatives to the

sample quantile using kernel-type estimators. Early work on kernel-type estimators

of the quantile function include Nadaraya (1964) and Parzen (1979). Reiss (1980)

showed that the asymptotic relative deficiency of the sample quantile with respect

to a linear combination of finitely many order statistics diverges to infinity as the

sample size increases. Falk (1984) also examined the asymptotic relative deficiency

of the sample quantile compared to kernel-type quantile estimators. Yang (1985)

studied the asymptotic properties of kernel-type quantile estimators. Padgett (1986)

extended the previous works to handle right-censored data. All of these results are

based on symmetric kernel functions. Since the domain of the quantile function is a

bounded interval (0, 1), using symmetric kernel functions can lead to boundary bias

or spill-over effects. Boundary bias is due to inappropriate weights of kernel functions

around the boundaries of the quantile function when fixed symmetric kernels are used.

Chen (1999, 2000) proposed the use of beta kernel estimators for density func-

tions and regression curves in order to avoid boundary bias. Considering that the

support of a beta probability density function matches the domain of the quantile

function, it is appropriate to incorporate a beta probability density into smooth non-

parametric quantile function estimators. In this paper, we propose a new kernel-type

quantile estimator under right censoring based on the beta probability density func-

tion, which is free of spill-over effects.
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2 THE PRODUCT-LIMIT QUANTILE ESTIMA-

TOR

In this section, we briefly introduce the product-limit quantile estimator under right

censoring. Let T1, T2, . . . , Tn be iid true lifetimes of n individuals from the distribution

F (·) with the pdf f(·). We assume that the lifetimes can possibly be censored on the

right by iid random variables U1, U2, . . . , Un from the distribution H(·) which are

independent of the Ti’s. So, we only observe the right-censored data Xi = min(Ti, Ui)

with the censoring indicator variable which is defined as

∆i =

 1 if Ti ≤ Ui

0 if Ti > Ui
.

The distribution of each Xi is then given by G = 1− (1−F )(1−H). To estimate the

cdf of the true lifetime with the censored samples (Xi,∆i), the product limit (PL)

estimator, originally attributed to Kaplan and Meier (1958), is popularly used. Let

F̂n(·) denote the empirical cdf F (·) with the empirical survival Ŝn(t) = 1 − F̂n(t).

Then the product limit (PL) estimator of S(t) = 1− F (t) is defined as

Ŝn(t) =


1 if t < X(1)

k−1∏
i=1

( n− i
n− i+ 1

)∆(i)

if X(k−1) ≤ t < X(k), k = 2, . . . , n

0 if t ≥ X(n)

,

where X(i) are the order statistics with their corresponding indicators ∆(i). Using

this, the empirical cdf is given by F̂n(t) = 1 − Ŝn(t) and the empirical PL quantile

function is defined as Q̂n(p) = F̂−1
n (p) = inf{t : F̂n(t) ≥ p}.
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3 SMOOTH QUANTILE ESTIMATORS BASED

ON KERNEL DENSITIES

In this section, we briefly describe the kernel-type quantile function estimator under

right censoring which is proposed by Padgett (1986). Then we provide the proposed

estimator along with its asymptotic properties.

Based on symmetric kernel functions, Padgett (1986) proposed the kernel-type

quantile function defined as

KQn(p) =

∫ 1

0

F̂−1
n (t)

1

hn
K
(t− p
hn

)
dt.

It is easily seen that the above becomes

KQn(p) =
n∑
i=1

X(i)

∫ Pi

Pi−1

1

hn
K
(t− p
hn

)
dt

=
n∑
i=1

X(i)

[
L
(Pi − p

hn

)
− L

(Pi−1 − p
hn

)]
, (1)

where L(u) =
∫ u
−∞K(t)dt, Pi = F̂n(X(i)) (i = 1, 2, . . . , n), and P0 = 0. For more

details, see Padgett (1986).

We propose the use of the nonparametric quantile estimator based on the beta

probability density

BQn(p) =

∫ 1

0

F̂−1
n (t) ·Kβ(t; p/bn + 1, (1− p)/bn + 1))dt,

where Kβ(t; a, b) is the beta probability density given by

Kβ(t; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1,

where 0 < t < 1. For brevity, we denote Kβ(t; p) = Kβ(t; p/bn + 1, (1 − p)/bn + 1)).

Note that Kβ(t; p) has the mode at t = p. Using an approach similar to that used to

derive (1), it is immediate that

BQn(p) =
n∑
i=1

X(i)

[
Lβ(Pi; p)− Lβ(Pi−1; p)

]
,
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where Lβ(t; p) is the cdf of the beta pdf Kβ(t; p).

Theorem 1. Suppose that F (·) is twice differentiable at ξp = Q(p) with f(ξp) > 0

and a sequence of {bn : n ≥ 1} is such that bn → 0 as n→∞. Let TH(F−1) = inf{t :

H(F−1(t)) = 1} and p0 = min{1, TH(F−1)}. Then for 0 < p < p0, we have

√
n
{

BQn(p)−Q(p)
}

= −
√
n
F̂n
(
ξp
)
− p

f
(
ξp
) + n1/2bn(1− 2p)Q′(p) +

1

2
n1/2bnp(1− p)Q′′(p)

+ o(n1/2bn) + op(1).

Proof. Analogous to the setup in the beginning of the proof of Theorem 1 of Yang

(1985), we write
√
n
{

BQn(p)−Q(p)
}

= dn(p) + An +Bn,

where

dn(t) =
√
n
{
Q̂n(t)−Q(t)

}
An =

∫ 1

0

{
dn(t)− dn(p)

}
Kβ(t; p)dt

Bn =
√
n

∫ 1

0

{
Q(t)−Q(p)

}
Kβ(t; p)dt.

From an almost-sure Bahadur-type representation (Bahadur, 1966) established by

Cheng (1984), we have

dn(p)
a.s.
= −
√
n
F̂n(ξp)− p
f(ξp)

+Op(n
−1/4(log n)3/4),

for 0 < p < p0; see also the equation (8.1.27) of Csörgő (1983). We write

An = a1 + a2 + a3,

where for 0 < δ < 1− p

a1 =

∫ p−δ

0

{
dn(t)− dn(p)

}
Kβ(t; p)dt

a2 =

∫ p+δ

p−δ

{
dn(t)− dn(p)

}
Kβ(t; p)dt

a3 =

∫ 1

p+δ

{
dn(t)− dn(p)

}
Kβ(t; p)dt.
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Then we have

a1 ≤ sup
t∈(0,p−δ)

(
|dn(t)− dn(p)|

∫ p−δ

0

Kβ(t; p)dt
)

= op(1),

and similarly a3 = op(1). It is easily seen that

a2 ≤ sup
t∈(p−δ,p+δ)

|dn(t)− dn(p)|.

Using an argument similar to that used in the proof of Lemma 2 of Lio et al. (1986),

we have

a2 ≤ sup
t∈(p−δ,p+δ)

|dn(t)− dn(p)| = op(1)

and thus An = op(1).

Using a Taylor series expansion of Q(t) about p gives

Q(t)−Q(p) = Q′(p)(t− p) +
1

2
Q′′(p)(t− p)2 +Rn(p),

where the error term Rn(p) is expressed as an integral (see Theorem 9.29 of Apostol

(1974))

Rn(t) =
1

2

∫ t

p

(t− u)2Q′′′(u)du =

∫ t

p

(t− u)
{
Q′′(u)−Q′′(p)

}
du.

Following the same argument in the Appendix of Chen (2000), we have∫ 1

0

Rn(t)Kβ(t; p)dt = o(bn).

We also have∫ 1

0

tKβ(t; p)dt =
p+ bn
1 + 2bn

= p+ (1− 2p)bn +O(b2
n)∫ 1

0

t2Kβ(t; p)dt =
(p+ bn)(p+ 2bn)

(1 + 2bn)(1 + 3bn)
= p2 + p(3− 5p)bn +O(b2

n).

Using the above results, we have

Bn = n1/2bn(1− 2p)Q′(p) +
1

2
n1/2bnp(1− p)Q′′(p) + o(n1/2bn)

which completes the proof.
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Corollary 2. In addition to the conditions in the above theorem, suppose that a se-

quence of {bn : n ≥ 1} is such that n1/2bn → 0 as n→∞. Then
√
n
{

BQn(p)−Q(p)
}

converges in distribution to the normal distribution with mean zero and variance

σ2(p), where

σ2(p) =
(1− p)2

f 2(ξp)

∫ p

0

du

(1− u)2{1−H(F−1(u))}
.

Proof. Since n1/2bn → 0 as n → ∞, it suffices to show that
√
n{F̂n

(
ξp
)
− p}/f

(
ξp
)

converges in distribution to the normal with mean zero and variance σ2(p). This is

immediate by using Corollary 6.1 of Burke et al. (1981) or Theorem 8.1.1 of Csörgő

(1983).

4 AN ILLUSTRATIVE EXAMPLE

We illustrate the proposed quantile estimator with the comparison to the symmetric-

kernel-based quantile estimator of Padgett (1986). To compare our result, we used

the same data set analyzed by Padgett (1986) who explicitly provides the raw data set

in Table 7. We briefly explain how he obtained the quantile estimator in his example.

Then we compare our quantile estimates.

Padgett (1986) pointed out that it was difficult to find an optimal bandwidth

in the sense of the (approximate) mean integrated square error due to mathematical

difficulties arising from censoring. Thus, the bootstrap technique was used to deter-

mine the bandwidth hn. A bootstrap sample {(X∗1 ,∆∗1), (X∗2 ,∆
∗
2), . . . , (X∗n,∆

∗
n)} is

randomly drawn from {(X1,∆1), (X2,∆2), . . . , (Xn,∆n)} with replacement and each

element having probability 1/n of being sampled. Using 300 bootstrap samples of

the raw data at each value of p and hn, the bootstrap mean square errors (MSEs)

of KQn(p) are obtained. The bootstrap bandwidth is obtained by choosing the value

of hn which gives the minimum bootstrap MSEs. For more details on a method for
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Figure 1: Quantile estimators under consideration.

the bootstrap bandwidth selection, see Padgett and Thombs (1989). From his ex-

ample, the bootstrap estimates of hn were h∗n = 0.30, 0.26, 0.34, 0.34, 0.40 and 0.47

at p = 0.1, 0.25, 0.50, 0.75, 0.90 and 0.95, respectively. Based on these results, a

value of hn was constructed as follows: hn = 0.28 for 0 < p ≤ 0.25, hn = 0.34 for

0.25 < p < 0.90 and hn = 0.40 for 0.90 ≤ p ≤ 1. It is noted that he recommended

that more smoothing is required for larger quantiles due to heavy right-censoring and

small sample size of the example. Thus, for the quantile estimator at a large p, the

bandwidth hn is larger as the bootstrap estimate provides. In Figure 1, we drew

KQn(p) versus p (dashed curve). For more details, see Padgett (1986).
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Similarly, we obtain our proposed quantile estimates as follows. First, using

the aforementioned bootstrap technique, the bandwidth estimates were determined

as b∗n = 0.01, 0.16, 0.85, 0.06, 0.37 and 0.01 at p = 0.1, 0.25, 0.50, 0.75, 0.90 and 0.95,

respectively. Based on these estimates, we constructed a value of bn as follows: bn =

0.01 for 0 < p ≤ 0.10, bn = 0.16 for 0.10 < p ≤ 0.40, bn = 0.85 for 0.40 < p ≤ 0.60,

bn = 0.40 for 0.60 < p ≤ 0.90 and bn = 0.01 for 0.90 < p ≤ 1. In order to make

the comparison of the results of two methods more transparent, we superimposed

the BQn(p) versus p (solid curve) with the empirical PL quantile Q̂n(p) (dotted step

function) in Figure 1. From the figure, one can clearly see that the proposed quantile

estimator is better near the boundaries than KQn. Especially when p is close to 0 or

1, the symmetric-kernel-based estimator is significantly small than the empirical PL

quantile Q̂n(p) due to the spill-over effects.

We calculate the MSE of the estimators with respect to the sample quantile as

follows:

MSE(KQn) =
1

n

n∑
i=1

{
KQn(F̂n(X(i)))−X(i)

}2

= 0.25719

MSE(BQn) =
1

n

n∑
i=1

{
BQn(F̂n(X(i)))−X(i)

}2

= 0.02179

The results also clearly indicate that the proposed method outperforms the symmetric

kernel approach of Padgett (1986) overall.

5 SIMULATION

In order to examine the performance of the proposed method, we use a small Monte

Carlo simulation with 10,000 runs. We compare the performance of the proposed

method with the sample quantile and the method of Padgett (1986).

We generated a random sample of size n = 50 from the exponential distri-

bution F (t) = 1 − e−t which is censored on the right with the censoring model
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H(t) = 1 − e−t. Then we calculated the simulated MSEs of the sample quan-

tile, the proposed quantile method and the quantile function of Padgett (1986) for

p = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 with various bandwidths (0.01, 0.02, 0.05, 0.1,

0.2, 0.5).

To help compare the simulated MSEs, we provide the simulated relative efficiency

(SRE) based on the MSE which is defined as

SRE(Qn(p)) =
MSE(F̂−1

n (p))

MSE(Qn(p))
,

where Qn is either BQn or KQn. The results are presented in Table 1. From the

simulation results, the proposed method using the beta kernel clearly outperforms

the method of Padgett (1986) using the symmetric kernel. It is also noteworthy that

the SREs for the above two methods are greater than one in most cases, which justifies

the use of kernel smoothing instead of the sample quantile.

Table 1: Simulated relative efficiency under consideration

bn, hn 0.01 0.02 0.05 0.1 0.2 0.5

p BQn KQn BQn KQn BQn KQn BQn KQn BQn KQn BQn KQn

0.05 1.101 0.997 1.236 0.987 1.781 0.996 3.472 1.024 8.442 1.206 0.933 3.120

0.10 1.134 1.026 1.238 1.046 1.617 1.053 2.585 1.069 6.570 1.144 2.801 2.139

0.25 1.048 1.002 1.117 1.005 1.343 1.013 1.813 1.031 3.121 1.082 4.663 1.622

0.50 1.105 1.020 1.159 1.036 1.276 1.075 1.415 1.132 1.580 1.253 1.721 1.580

0.75 1.880 1.017 2.090 1.035 2.593 1.088 3.304 1.164 4.400 1.285 5.186 4.368

0.90 1.849 1.012 2.059 1.022 2.734 1.053 3.926 1.131 5.613 2.765 4.884 3.345

0.95 1.782 1.002 2.014 1.007 2.563 1.039 3.225 2.078 3.605 3.130 2.437 1.223

We investigated the performance of the proposed method for various bandwidths.

However, it should be noted that it is not appropriate to compare the two different

methods with the same bandwidths bn = hn. Thus we generated the pilot samples

from the same exponential distribution to obtain the bootstrap bandwidths. Using
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200 bootstrap samples of the pilot sample at each value of bn = 0.01(0.01)1.0 and

hn = 0.01(0.01)1.0, the bootstrap mean square errors of BQn and KQn are obtained,

respectively. We repeated this Monte Carlo experiment with 100 runs to obtain the

simulated bootstrap bandwidths. Using these simulated bootstrap bandwidths, we

performed a Monte Carlo simulation with 10,000 runs again. The results are presented

in Table 2 which also indicates that the proposed method outperforms.

Table 2: Simulated bootstrap bandwidths and simulated relative efficiency under

consideration

p 0.05 0.10 0.25 0.50 0.75 0.90 0.95

Bootstrap bandwidths

b∗n 0.0129 0.0149 0.0310 0.5381 0.1209 0.0206 0.0328

h∗n 0.1242 0.1786 0.2722 0.7512 0.3428 0.0894 0.0199

Simulated relative efficiency

BQn 4.836 5.496 4.179 1.734 5.141 3.679 2.012

KQn 0.991 1.039 1.008 1.588 1.192 1.023 1.019

6 CONCLUDING REMARKS

In this paper, we developed a new nonparametric estimator of a quantile function

based on a beta probability density function. This new method offers clear advan-

tages over the symmetric kernel approach and this was demonstrated though an

example and a Monte Carlo simulation. Any kind of kernel approach requires an

optimal bandwidth and because this application involves censoring, it is very diffi-

cult to obtain an optimal bandwidth. In order to calculate an optimal bandwidth, we

used the bootstrap technique at a given point. Challenging future work would involve

developing methods for determining a global or local optimal bandwidth without the

use of bootstrapping.
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