## Engineering Statistics-I

IE-2400210, Spring 2024
Mon/Wed 9:00-10:15 (Sec. 066)

| Instructor | Chanseok Park (e-mail: CP<AT>PUSAN<DOT>AC<DOT>KR) |
| :--- | :--- |
|  | OfFICE: Engineering Building 207-10527 |
|  | OfFICE Hours: $12: 00-12: 50 \mathrm{pm}(\mathrm{M} / \mathrm{W})$; or by appointment. |

Textbook Probability and Statistical Inference by Hogg, Tanis, and Zimmerman. Pearson, 9th edition (2014).

Web Page https://AppliedStat.GitHub.io/class/2024S-teaching2-stat1/
Software $\quad R$ Language (http://www.r-project.org).
Maple (http://www.maplesoft.com).
Prerequisite The expectation is that you have already been exposed to the basic probability and statistics.

## Description and Learning Objectives

- Engineering Statistics-I course will focus on basic concepts and theories of probability and their applications.
- Topics covered in this class include basic distribution theories and various probability distributions such as binomial, negative binomial, Poisson, exponential, normal, bivariate, etc.
- We will also study various limit and approximation techniques widely used for probability and statistics.
- The popular R statistical language will be handled in this class.

Upon successful completion of this course, a student will be able to:

- Understand basic concepts on probability theories.
- Obtain basics on discrete and continuous distributions.
- Obtain conditional distributions.
- Obtain bivariate distributions.
- Obtain various approximation technique.

Grading The final grade will be curved and calculated as follows.
Homeworks: $5 \%$
Attendance: $\quad 5 \%$ (will be checked at random and count 3 points)
Midterm: $\quad 45 \%$
Final: $\quad 45 \%$

## Rough Grading Guide:

- A+: $95 \sim 100$ A: $90 \sim 95-$
- B+: $85 \sim 90-$ B: $80 \sim 85-$
- C+: $70 \sim 80-\quad$ C: $60 \sim 70-$
- D+: $50 \sim 60-$ D: $40 \sim 50-$
- F : below 40 .

Exams Midterm: T.B.A. In class
Final: T.B.A. In class

- All the exams are closed-book and in class.
- The final exam will be comprehensive.
- During the exams, a basic calculator will be permitted but cannot be shared with others.
- Calculators in smart phones, tablet PC and laptops are not allowed.
- No early or late exams will be allowed without a written and legitimate excuse.

Homeworks - The students can collaborate on their homework problems, but they should submit their homeworks separately.

- Late homeworks will not be accepted.
- Up to $1 \sim 3$ problems, selected at random, will be graded in detail, on a scale of $0-5$ each.
- To get full credit, you must show all work on the homework problems, which must be submitted in the same order as they are assigned.


## Tentative Schedules

1 Basic probability theories.
2 Various discrete distributions such as binomial, negative binomial, Poisson, etc.
3 Various continuous distributions such as exponential, normal, etc.
4 Basics on discrete bivariate distributions.
5 Correlation coefficient.
6 Conditional distributions.
7 Basics on continuous bivariate distributions.
8 Bivariate normal distribution.
9 Functions of one random variable.
10 Functions of two random variables.
11 Moment-generating function technique.
12 Central limit theorem.
13 Approximations for discrete distributions.
14 Various inequalities useful for statistics.
15 Limit of moment-generating functions.
16 Final Exam.

